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|solation of Radwaste (BMU 2010) - VSG
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Backfill and seals:
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emplacement drifts and cross-cuts ... until crushed salt is sufficiently

Humid crushed salt in access drifts compacted shaft and drift seals
Bl Drift seals (made of MgO-concrete)
B Shaft seals include humid crushed salt
sealing elements

guarantee safe confinement!




@Eﬁ%&m
. "
Drift Seals — Thermal Impact ===
TEC
= Drift seals are subjected to a long-lasting thermal impact/load
» The temperature maximum will appear after repository closure
= Question: Does the thermal impact affect drift seals” functionality due to
thermomechanical induced crack formation?
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= Argumentation so far: The MgO-concrete structure was subjected to higher
temperatures in its past

= However, the only significant thermal load considered is hydration heat at early age
(mass concrete)

= Does this argumentation hold?
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Structural Model — Material Model

= The geometry of a drift seal is simple
» Simple structural model
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= The material behavior of concrete is complicated even in the case of conventional
concrete

» So-called engineering models are used whose validness is restricted to special
applications

= Question: But what about the material behavior of MgO-concrete with MgO
constituting the binding agent and crushed salt the aggregate?



Starting Point: Conventional Concrete

Knowledge on material behavior of conventional mass concrete

= Heat release due to hydration process and coupling of concrete age to temperature
history

= Evolution of elastic material properties depending on concrete age

= Evolution of mechanical strength depending on concrete age

= Evolution of shrinking/swelling depending on concrete age and hygric state

= Evolution of viscous behavior depending on concrete age and additional factors

= Distinguishing two* types of creep behavior
= Basic creep (long term creep/viscous flow)
= Transient creep (short term creep/delayed elastic)

* The existence of one or two types of creep was frequently discussed in the past and the
scientific discussion is ongoing. Presently, the discussion tends to two parts.
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Conventional Concrete — Decomposition of Strains
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Conventional Concrete - Creep Influencing Factors

Under repository conditions thermal impact occurs at

= High concrete age

= Dry constant climate (expected repository conditions)
= One long-lasting thermal impact

» Some influencing factors could be neglected
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» Basic rheological models used for

concrete
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Rheological model used for salt
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MgO-Concrete - Laboratory Investigations

BGET

= Challenge: Test specimens of high concrete age kept at
constant climate

» Availability of test specimens of MgO-concrete that were
produced in the context of the building of flow barriers in the
Asse mine

= Definition of the load-temperature conditions of
laboratory tests conjointly with GRS taking into account
conditions of the VSG drift seals

> Triaxial tests starting at 30 °C heating up to 60 °C, loading
condition 22 MPa axial stress and 2 MPa radial stress but well
below MgO-concrete”s strength

» Triaxial tests were performed twice under nearly similar
conditions to control the reproducibility of test results
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MgO-Concrete — Laboratory Test Results
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Experimental Results and Numerical Adjustments

Some numerical adjustments to available tests in the waiting period for additional test results
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= Hein”s crushed salt approach for the Maxwell element supplemented by an Arrhenius term

= Linear Kelvin element with constant elastic module and constant viscosity supplemented
by an Arrhenius term

= Accompanying checks whether parameter values remained within reasonable limits

Y

Numerical adjustments were too stiff
The increasing trend in the lab test was assumed not to be plausible

Y
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Results from (Additional) Mainly Spherical Tests
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Results from Mainly Deviatoric Tests 2 W
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Material Model for high aged MgO-concrete
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Maxwell Element and Successive Parameter
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Kelvin Element and Parameter ldentification e
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= Requiring that all experiments should be captured by the same set of parameters the
identified parameter set is unsatisfactory as the Kelvin element remains too stiff

= Typically, thermal activation plays a role of ,softening“ the material

» Consequently, temperature dependency of strain rate immediately after
mechanical/thermal load step was investigated in detail (assuming that in this time
period the Kelvin element dominates the strain rate)
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Influence of Temperature o= ﬂ:

Temperature dependency of strain rate decomposed in deviatoric and
spherical part shortly after temperature rise
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= Result: None or very low temperature dependency




Process Understanding and Conclusions
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» The short term process seems to be governed by viscoelasticity (like concrete)

» Due to the limitations of engineering concrete models further applications of
viscoelasticity were considered

= Literature from modeling of polymers was included

» The finding: The viscoelastic behavior of polymers is described by a
spectrum

» This issue is explained by the internal structure of the polymers being
composed of different molecular chains

» This argumentation also holds for concrete being a multi-aggregate material

» The argumentation explains the stiff behavior of one Kelvin element
(missing internal degrees of freedom to represent the spectrum)

» The Maxwell and Kelvin chains applied in concrete models on a semi-
empirical basis are an adequate approach, the parameters of the chains,
however, are not independent (as they treated) but belong to a spectrum

» The parameters of the spectrum must be identified, experimentally
» The mathematics to describe these relationships is non-standard



Summary and Outlook

8t

= A material model for MgO-concrete was established consisting of
rheological elements - Maxwell and Kelvin type - and being able to capture
thermal activation

= Experimental results gained from complex experiments formed the basis
for parameter identification

» The Maxwell element shows thermally activated behavior and seems to
capture mainly the salt aggregate”s influence

» The range of exponents identified indicates the dominance of pressure
solution creep

= The Kelvin element did not agree well with the experimental results — too
stiff

= Surprisingly, the Kelvin element shows low temperature dependency
indicating that a different (unexpected) type of process is acting

= Based on further information the conclusion is drawn that an internal
“‘dynamic” process may act that is characterized by a spectrum

» Due to the “dynamics” of the process potentially it might be neglected in
long-lasting processes with small changes on the time scale
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